【4】J Biomed Inform:利用人工智能寻找心脏疾病的迹象
doi:10.1016/j.jbi.2019.103270
近日,一项刊登在Journal of Biomedical Informatics杂志上的研究报告中,来自国外的研究人员利用机器学习处理未标记的电子健康记录(electronic health record ,EHR)数据,揭示了心血管疾病(cardiovascular disease,CVD)的发生过程。
这项研究基于自动化的患者表型(如果眼睛的颜色是一种特征,那么蓝色眼睛就是一种表型)和丰富的纵向数据。Zhaojuan博士、weiqi博士和他的同事收集了12380例至少在CVD诊断前10年被识别的患者记录。自动扫描在该数据集中发现了1068种不同的患者表型。
【5】Genome Med:人工智能助力克罗恩氏病的治疗
doi:10.1186/s13073-019-0670-6
在最近的研究中,科学家开发了一种计算方法,可以帮助增进对克罗恩病(Crohn Disease,一种引起消化道炎症的疾病)的理解和治疗。由罗格斯(Rutgers)领导的这项研究发表在Genome Medicine杂志上。该研究利用人工智能检查了111人中克罗恩氏病的遗传特征。该方法揭示了以前未发现的与疾病相关的基因,并准确预测了其他数千人是否患有该疾病。
研究者Yana Bromberg表示我们的方法不是临床诊断工具,但是它会产生有趣的观察结果。进一步的实验工作可能揭示某些克罗恩氏病背后的分子原因,并有可能促进对该病的更好治疗。
【6】Nat Machine Intelligence: 人工智能助力生物医学成像
doi:10.1038/s42256-019-0095-3
根据最近一项研究,苏黎世联邦理工学院和苏黎世大学的科学家成功利用机器学习方法来改善光声成像。这种相对年轻的医学成像技术可用于诸如可视化血管,研究脑活动,表征皮肤病变和诊断乳腺癌等方向。然而,渲染图像的质量很大程度上取决于设备使用的传感器的数量和分布:传感器的数量越多,图像质量就越好。 对此,研究人员开发的新方法可以在不放弃最终图像质量的情况下大幅减少传感器的数量,从而可以降低设备成本,提高成像速度并改善诊断结果。
光声学在某些方面与超声成像相似。在后者中,探头将超声波发送到体内,并被组织反射。探头中的传感器检测返回的声波,随后生成人体内部的图像。在光声成像中,取而代之的是将非常短的激光脉冲发送到组织中,然后被吸收并转换成超声波。最终,超声波被检测并转换为图像。
【7】JAMA Network Open:突破!新型人工智能系统或能优于临床医生对乳腺癌进行准确诊断!
doi:10.1001/jamanetworkopen.2019.8777
小编推荐:
惠及3.3亿心血管疾病患者丨首个
Cell子刊最新研究发现诱惑红和落
「医药速读社」国家疾病预防控制
国家疾病预防控制局亮相 王贺胜
中国养生网()