进一步的研究表明,细胞进入分裂缓慢的状态是对药物产生耐受的先决条件,而且这种耐药机制似乎独立于癌症类型和药物类型。这一发现意味着靶向细胞转变为分裂缓慢状态的过程是一种有趣的抗癌策略。例如,在基底细胞癌(BCC)中,如果迫使对药物产生耐受的缓慢分裂细胞加快增殖,会让它们重新对Hedgehog(Hh)信号通路抑制剂vismodegib敏感,导致细胞的死亡。
▲癌细胞产生暂时药物耐受和永久抗药性的重编程过程(图片来源:参考资料[1])
转变为对药物产生永久抗性的细胞状态
这些对药物产生耐受,分裂缓慢的细胞能够通过进一步的重新编程,获得对药物的永久抗性。这一重新编程的过程与表观遗传学和转录变化相关。此外,肿瘤的微环境和癌细胞的起源可能在抗性状态的产生中也起到重要作用。
调控细胞可塑性的表观遗传学机制
细胞对药物耐受能力的可逆性表明,表观遗传学层面上的重新编程起到了非常重要的作用,近来的研究也表明,细胞表型的变化与组蛋白甲基化的显著改变相关。例如,具有组蛋白甲基转移酶功能的EZH2蛋白在神经内分泌前列腺癌中高度表达。神经内分泌前列腺癌是一种严重的去势抵抗性前列腺癌。这些癌细胞转化成为不依靠雄激素受体介导的信号通路进行增殖的形态,因此对靶向雄激素信号通路的疗法产生耐药性。使用遗传学或者药理手段在转化为神经内分泌形态的前列腺癌细胞中抑制EZH2蛋白的活性,能够逆转这种细胞表型的转变,恢复它们对药物的敏感性。
值得注意的是,EZH2的高度表达在肺癌小鼠模型中促进肺癌细胞分化为神经内分泌形态,这意味着EZH2可能在多种癌症类型中介导神经内分泌表型的分化。
除了EZH2以外,名为REST的表观遗传学因子也在神经内分泌前列腺癌和肺癌中介导癌细胞向神经内分泌表型的分化。
调控细胞可塑性的重要转录因子和信号通路
科学家们对癌细胞转录组的分析发现了与细胞可塑性相关的重要转录因子,其中SOX基因家族中的多个成员在介导药物引发的细胞可塑性方面起到重要作用。其中,在动物试验中,SOX2可以诱导前列腺癌和肺癌细胞分化为神经内分泌表型。而SOX10能够诱导黑色素瘤和乳腺癌细胞分化为与神经脊(neural crest)细胞类似的状态,并且对药物产生抗性。
近年来的研究还发现了与药物引发的细胞可塑性相关的多条信号通路。它们包括WNT-β-连环素信号通路, IL-6-STAT3信号通路,以及类维生素A X受体(retinoid X receptor, RXR)信号通路。
肿瘤微环境对细胞可塑性的影响
实体瘤不但包括癌细胞,还包括成纤维细胞、内皮细胞、肿瘤浸润免疫细胞等多种复杂成分。复杂的肿瘤微环境通过分泌因子和细胞外基质能够调控细胞的可塑性,从而介导药物抗性的产生。
癌症相关成纤维细胞(CAFs)在黑色素瘤中通过分泌肝细胞生长因子(HGF)等可溶性因子,以及与癌细胞的接触,促进疗法抗性产生。临床试验数据表明,血浆中HGF因子水平越高,患者对BRAF抑制剂vemurafenib的响应越差。
小编推荐:
揭秘癌细胞耐药新机制 通过以死
揭秘癌细胞耐药新机制 通过以死
揭秘癌细胞耐药新机制 通过以死
揭秘癌细胞耐药新机制 通过以死
中国养生网()